ÌÇÐÄVlog

People

Dr Michael Kampouridis

Faculty Dean Postgraduate (Science & Health) - Reader
School of Computer Science and Electronic Engineering (CSEE)
Dr Michael Kampouridis
  • Email

  • Location

    1NW.3.17, Colchester Campus

  • Academic support hours

    Please email me first to arrange a meeting.

Profile

Biography

I hold a PhD in Computer Science, which I obtained from the School of Computer Science and Electronic Engineering, ÌÇÐÄVlog. I also hold an MSc in Computer Studies, also from the ÌÇÐÄVlog, and a BSc in Economic Sciences, from the Department of Economic Sciences from the University of Athens, Greece. Prior appointments before coming to ÌÇÐÄVlog include a lectureship at the School of Computing at the University of Kent, and research visits to AI-Econ Center, Department of Economics, at National Cheng Chi University of Taiwan. My research focuses on the use of Machine Learning to Business applications, particularly to Finance and Economics. I am particularly interested in evolutionary algorithms and financial forecasting. My students have done research on different financial areas such as algorithmic trading, directional changes, volatility forecasting, future cash flow growth, sentiment analysis for the stock market, real estate investment trusts, temperature and rainfall weather derivatives. If you are interested in joining my team as a PhD student in the above or any similar areas, feel free to contact me. I am also heavily involved on a number of industrial projects (see Grants and Funding section below), as well as projects from public sector organisations, such as the East Suffolk and North ÌÇÐÄVlog NHS Foundation Trust (ESNEFT) and the General Lighthouse Authorities of the UK and Ireland. Outside the ÌÇÐÄVlog, I am a Senior Fellow of the Higher Education Academy. I was also the Chair of the IEEE Computational Finance and Economics Technical Committee for 2020 and 2021.

Qualifications

  • Postgraduate Certificate in Higher Education University of Kent, (2012)

  • PhD Computer Science ÌÇÐÄVlog, (2011)

  • MSc in Computer Studies ÌÇÐÄVlog, (2006)

  • BSc in Economics National and Kapodistrian University of Athens, (2005)

Appointments

ÌÇÐÄVlog

  • Faculty Dean (Postgraduate), Science and Health, ÌÇÐÄVlog (1/8/2024 - present)

  • Director, Centre for Computational Finance and Economic Agents (CCFEA), ÌÇÐÄVlog (1/9/2023 - 31/7/2024)

  • Deputy Director of Education, School of Computer Science and Electronic Engineering, ÌÇÐÄVlog (1/9/2023 - 31/7/2024)

  • Reader, School of Computer Science and Electronic Engineering, ÌÇÐÄVlog (1/10/2023 - present)

  • Senior Lecturer, School of Computer Science and Electronic Engineering, ÌÇÐÄVlog (1/10/2021 - 30/9/2023)

  • Lecturer, School of Computer Science and Electronic Engineering, ÌÇÐÄVlog (1/4/2020 - 30/9/2021)

Research and professional activities

Research interests

Applications of machine learning to finance

Key words: Genetic Programming
Open to supervise

Financial forecasting & algorithmic trading

Key words: Fundamental/Technical/Sentiment Analysis; Directional Changes
Open to supervise

Weather derivatives

Key words: Applying Machine Learning methods
Open to supervise

Evolutionary algorithms

Key words: Genetic Programming
Open to supervise

Teaching and supervision

Previous supervision

Xinpeng Long
Xinpeng Long
Thesis title: Financial Forecasting with the Combination of Physical and Event-Based Time Using Genetic Programming
Degree subject: Computational Finance
Degree type: Doctor of Philosophy
Awarded date: 16/4/2025
Fatim Zahra Habbab
Fatim Zahra Habbab
Thesis title: Using Machine Learning to Investigate the Role of Real Estate in a Mixed-Asset Portfolio
Degree subject: Computational Finance
Degree type: Doctor of Philosophy
Awarded date: 3/10/2024
Ozgur Salman
Ozgur Salman
Thesis title: Trading Strategies Optimization Using a Genetic Algorithm Under the Directional Changes Paradigm
Degree subject: Computational Finance
Degree type: Doctor of Philosophy
Awarded date: 15/8/2024
Evangelia Paraskevi Christodoulaki
Evangelia Paraskevi Christodoulaki
Thesis title: Fundamental, Sentiment and Technical Analysis for Algorithmic Trading, Using Novel Genetic Programming Algorithms
Degree subject: Computational Finance
Degree type: Doctor of Philosophy
Awarded date: 3/7/2024

Publications

Publications (1)

Kampouridis, M., Kanellopoulos, P., Kyropoulou, M., Melissourgos, T. and Voudouris, AA., (2022). Multi-Agent Systems for Computational Economics and Finance

Journal articles (25)

Habbab, F., Kampouridis, M. and Papastylianou, T., (2025). . Artificial Intelligence Review. 58 (3), 70-70

Christodoulaki, E., Kampouridis, M. and Kyropoulou, M., (2025). A novel strongly-typed Genetic Programming algorithm for combining sentiment and technical analysis for algorithmic trading. Knowledge-Based Systems. 311, 113054-113054

Habbab, FZ. and Kampouridis, M., (2024). . Expert Systems with Applications. 235, 121102-121102

González-Núñez, E., Kampouridis, M. and Trejo, LA., (2024). . Big Data and Cognitive Computing. 8 (4), 34-34

Gonzalez-Nunez, E., Trejo, LA. and Kampouridis, M., (2024). . Applied Intelligence. 55 (1)

Kampouridis, M., Evdokimov, I. and Papastylianou, T., (2023). Application Of Machine Learning Algorithms to Free Cash Flows Growth Rate Estimation. Procedia Computer Science. 222, 529-538

Kampouridis, M., Kanellopoulos, P., Kyropoulou, M., Melissourgos, T. and Voudouris, A., (2022). . AI Communications: the European journal on artificial intelligence. 35 (4), 369-380

Adegboye, A., Kampouridis, M. and Otero, F., (2022). . Artificial Intelligence Review. 56 (6), 5619-5644

Kampouridis, M., Kanellopoulos, P., Kyropoulou, M., Melissourgos, T. and Voudouris, AA., (2022). Multi-Agent Systems for Computational Economics and Finance.. CoRR. abs/2210.03540

Adegbgoye, A. and Kampouridis, M., (2021). . Expert Systems with Applications. 173, 114645-114645

Adegboye, A., Kampouridis, M. and Otero, F., (2021). . International Journal of Intelligent Systems. 36 (12), 7609-7640

Brabazon, A., Kampouridis, M. and O’Neill, M., (2020). . Genetic Programming and Evolvable Machines. 21 (1-2), 33-53

Cramer, S., Kampouridis, M., Freitas, AA. and Alexandridis, A., (2019). . Swarm and Evolutionary Computation. 46, 184-200

Cramer, S., Kampouridis, M. and Freitas, AA., (2018). . Applied Soft Computing. 70, 208-224

Cramer, S., Kampouridis, M., Freitas, AA. and Alexandridis, AK., (2017). . Expert Systems with Applications. 85, 169-181

Alexandridis, AK., Kampouridis, M. and Cramer, S., (2017). . International Journal of Forecasting. 33 (1), 21-47

Kampouridis, M. and Otero, FEB., (2017). . Soft Computing. 21 (2), 295-310

Kampouridis, M. and Otero, FEB., (2017). . Expert Systems with Applications. 73, 145-160

Vastardis, N., Kampouridis, M. and Yang, K., (2016). . Journal of Ambient Intelligence and Smart Environments. 8 (6), 583-602

Brabazon, A. and Kampouridis, M., (2016). Foreword: special issue on computational finance and economics. Evolutionary Intelligence. 9 (4), 111-112

Kim, Y-H., Kattan, A., Kampouridis, M. and Yoon, Y., (2016). Discrete Dynamics in Evolutionary Computation and Its Applications. Discrete Dynamics in Nature and Society. 2016, 1-2

Kampouridis, M., Alsheddy, A. and Tsang, E., (2013). On the investigation of hyper-heuristics on a financial forecasting problem. Annals of Mathematics and Artificial Intelligence. 68 (4), 225-246

Kampouridis, M. and Tsang, E., (2012). Investment Opportunities Forecasting: Extending the Grammar of a GP-based Tool. International Journal of Computational Intelligence Systems. 5 (3), 530-530

KAMPOURIDIS, M., CHEN, S-H. and TSANG, E., (2012). MICROSTRUCTURE DYNAMICS AND AGENT-BASED FINANCIAL MARKETS: CAN DINOSAURS RETURN?. Advances in Complex Systems. 15 (supp02), 1250060-1250060

Kampouridis, M., Chen, S-H. and Tsang, E., (2012). Market fraction hypothesis: A proposed test. International Review of Financial Analysis. 23, 41-54

Books (4)

Sim, K., Kaufmann, P., Ascheid, G., Bacardit, J., Cagnoni, S., Cotta, C., D’Andreagiovanni, F., Divina, F., Esparcia-Alcázar, AI., Vega, FFD., Glette, K., Hubert, J., Hidalgo, JI., Iacca, G., Kampouridis, M., Kramer, O., Mavrovouniotis, M., Mora García, AM., Nguyen, TT., Otero, F., Schaefer, R., Silva, S., Tonda, A., Urquhart, N. and Zhang, M., (2018). Preface

Squillero, G., Sim, K., Ascheid, G., Bacardit, J., Brabazon, A., Burelli, P., Cagnoni, S., Coler, M., Cotta, C., D’Andreagiovanni, F., Divina, F., Esparcia-Alcázar, AI., de Vega, FF., Glette, K., Haasdijk, E., Heinerman, J., Hidalgo, JI., Hu, T., Iacca, G., Kampouridis, M., Kaufmann, P., Mavrovouniotis, M., Mora Garcia, AM., Schaefer, R., Silva, S., Tarantino, E., Nguyen, TT., Tonda, A., Urquhart, N. and Zhang, M., (2017). Preface

Squillero, G., Bacardit, J., Cagnoni, S., Falco, ID., Divina, F., Esparcia-Alcázar, AI., Glette, K., Hidalgo, JI., Kampouridis, M., Mavrovouniotis, M., Nguyen, TT., Sim, K., Urquhart, N., Burelli, P., Brabazon, A., Cotta, C., Cioppa, AD., Eiben, AE., De Vega, FF., Haasdijk, E., Hu, T., Kaufmann, P., Mora Garcia, AM., Schaefer, R., Tarantino, E. and Zhang, M., (2016). Preface

Squillero, G., Bacardit, J., Cagnoni, S., De Falco, I., Divina, F., Esparcia-Alcázar, AI., Glette, K., Hidalgo, JI., Kampouridis, M., Mavrovouniotis, M., Nguyen, TT., Sim, K., Urquhart, N., Burelli, P., Brabazon, A., Cotta, C., Cioppa, AD., Eiben, AE., de Vega, FF., Haasdijk, E., Hu, T., Kaufmann, P., Garcia, AMM., Schaefer, R., Tarantino, E. and Zhang, M., (2016). Preface

Book chapters (1)

Kampouridis, M., Chen, S-H. and Tsang, E., (2011). Market Microstructure: A Self-Organizing Map Approach to Investigate Behavior Dynamics under an Evolutionary Environment. In: Studies in Computational Intelligence. Editors: . Springer Berlin Heidelberg. 181- 197. 9783642233357

Conferences (53)

Habbab, F. and Kampouridis, M., Optimising a Prediction-based, Mixed-asset portfolio including REITs

Rayment, G., Kampouridis, M. and Adegboye, A., Predicting Directional Change Reversal Points with Machine Learning Regression Models

Christodoulaki, E. and Kampouridis, M., (2024).

Habbab, FZ. and Kampouridis, M., (2024).

Rayment, G. and Kampouridis, M., (2024).

Long, X. and Kampouridis, M., (2024).

Sapkota, MS., Doctor, F., Herrera, H., Kampouridis, M. and Yang, X., (2024). Machine Learning to Predict Surgery Duration: Towards Implementing AI and Digital Twin for Effective Scheduling

Habbab, F., Kampouridis, M. and Papastylianou, T., (2023).

Christodoulaki, E., Kampouridis, M. and Kyropoulou, M., (2023).

Long, X., Kampouridis, M. and Kanellopoulos, P., (2023).

Salman, O., Melissourgos, T. and Kampouridis, M., (2023).

Rayment, G. and Kampouridis, M., (2023). High Frequency Trading with Deep Reinforcement Learning Agents Under a Directional Changes Sampling Framework

Christodoulaki, E. and Kampouridis, M., (2023). Fundamental, Technical and Sentiment Analysis for Algorithmic Trading with Genetic Programming

Christodoulaki, E., Kampouridis, M. and Kanellopoulos, P., (2022).

Habbab, F., Kampouridis, M. and Voudouris, A., (2022).

Christodoulaki, E. and Kampouridis, M., (2022).

(2022). Preface

Habbab, FZ. and Kampouridis, M., (2022).

Long, X., Kampouridis, M. and Jarchi, D., (2022).

Salman, O., Kampouridis, M. and Jarchi, D., (2022).

Long, X., Kampouridis, M. and Kanellopoulos, P., (2022).

Adegboye, A., Kampouridis, M. and Johnson, CG., (2017). Regression genetic programming for estimating trend end in foreign exchange market

Kampouridis, M., Adegboye, A. and Johnson, C., (2017). Evolving Directional Changes Trading Strategies with a New Event-Based Indicator

Cramer, S., Kampouridis, M., Freitas, AA. and Alexandridis, AK., (2017). Pricing Rainfall Based Futures Using Genetic Programming

Cramer, S., Kampouridis, M. and Freitas, AA., (2016). Feature engineering for improving financial derivatives-based rainfall prediction

Cramer, S., Kampouridis, M. and Freitas, A., (2016). A Genetic Decomposition Algorithm for Predicting Rainfall within Financial Weather Derivatives

Squillero, G., Burelli, P., Bacardit, J., Brabazon, A., Cagnoni, S., Cotta, C., Falco, ID., Cioppa, AD., Divina, F., Eiben, AE., Esparcia-Alcàza, AI., de Vega, FF., Glette, K., Haasdijk, E., Hidalgo, JI., Hu, T., Kampouridis, M., Kaufmann, P., Mavrovouniotis, M., Mora García, AM., Nguyen, TT., Schaefer, R., Sim, K., Tarantino, E., Urquhart, N. and Zhang, M., (2016). Applications of evolutionary computation: 19th European conference, Evoapplications 2016 Porto, Portugal, March 30 – April 1, 2016 proceedings, part II

(2016). Applications of Evolutionary Computation

Cramer, S., Kampouridis, M., Freitas, AA. and Alexandridis, A., (2015). Predicting Rainfall in the Context of Rainfall Derivatives Using Genetic Programming

Cramer, S. and Kampouridis, M., (2015). Optimising the deployment of fibre optics using Guided Local Search

Gypteau, J., Otero, FEB. and Kampouridis, M., (2015). Generating Directional Change Based Trading Strategies with Genetic Programming

(2015). Applications of Evolutionary Computation

Shao, M., Smonou, D., Kampouridis, M. and Tsang, E., (2014).

Aluko, B., Smonou, D., Kampouridis, M. and Tsang, E., (2014).

Kattan, A., Kampouridis, M. and Agapitos, A., (2014). Generalisation Enhancement via Input Space Transformation: A GP Approach

Otero, FEB. and Kampouridis, M., (2014). A Comparative Study on the Use of Classification Algorithms in Financial Forecasting

Kattan, A., Kampouridis, M., Ong, Y-S. and Mehamdi, K., (2014). Transformation of input space using statistical moments: EA-based approach

Brookhouse, J., Otero, FEB. and Kampouridis, M., (2014). Working with OpenCL to speed up a genetic programming financial forecasting algorithm

Smonou, D., Kampouridis, M. and Tsang, E., (2013).

Shaghaghi, AR., Glover, T., Kampouridis, M. and Tsang, E., (2013). Guided Local Search for Optimal GPON/FTTP Network Design

Alexandiris, AK. and Kampouridis, M., (2013). Temperature Forecasting in the Concept of Weather Derivatives: A Comparison between Wavelet Networks and Genetic Programming

Kampouridis, M. and Sim, KM., (2013). A GP approach for price-speed optimizing negotiation

Kampouridis, M. and Otero, FEB., (2013). Using Attribute Construction to Improve the Predictability of a GP Financial Forecasting Algorithm

Kampouridis, M., (2013). An initial investigation of choice function hyper-heuristics for the problem of financial forecasting

Alsheddy, A. and Kampouridis, M., (2012). Off-line parameter tuning for Guided Local Search using Genetic Programming

Kampouridis, M., Glover, T., Shaghaghi, AR. and Tsang, E., (2012). Using a genetic algorithm as a decision support tool for the deployment of Fiber Optic Networks

Kampouridis, M. and Tsang, E., (2011). Using Hyperheuristics under a GP Framework for Financial Forecasting

Kampouridis, M., Chen, S-H. and Tsang, E., (2011). Market Microstructure: Can Dinosaurs Return? A Self-Organizing Map Approach under an Evolutionary Framework

Kampouridis, M., Chen, S-H. and Tsang, E., (2011). Investigating the effect of different GP algorithms on the non-stationary behavior of financial markets

Chen, S-H., Kampouridis, M. and Tsang, E., (2011). Microstructure Dynamics and Agent-Based Financial Markets

Kampouridis, M., Chen, S-H. and Tsang, E., (2010). Testing the Dinosaur Hypothesis under Empirical Datasets

Kampouridis, M. and Tsang, E., (2010). EDDIE for investment opportunities forecasting: Extending the search space of the GP

Kampouridis, M., Chen, S-H. and Tsang, E., (2010). Testing the Dinosaur Hypothesis under different GP algorithms

Grants and funding

2025

Statistical Analysis on AtoN Faults

General Lighthouse Authorities of the UK and Ireland

Develop an AI model and tool for search traffic forecasting and performance projection

Footprint Digital Ltd

2024

Trinity House (Harwich port) Consultancy Project

General Lighthouse Authorities of the UK and Ireland

Improving the �Assistant Coach� function on a fantasy league game website

Voono Ltd

To explore and implement applications of natural language processing in commodities trading software, enabling operators to interact with their data in a conversational manner.

Innovate UK (formerly Technology Strategy Board)

Innovate to Elevate (I2E) project with Otters AI to investigate the use of LLMs to generate joint value propositions.

Babergh and Mid Suffolk (Innovate to Elevate Programme)

A Manchester Growth Hub Project to review the components in a Market Access Rapid Review Document

Fingerpost Consulting Ltd

2023

ESNEFT Waiting List Reduction

East Suffolk and North ÌÇÐÄVlog NHS Foundation Trust

Iceni Projects Ltd

Innovate UK (formerly Technology Strategy Board)

IFE KTP Project Application: 'To design a custom transport management system using advanced machine learning techniques and data science for process automation and accurate prediction of vessel arrival times in the context of sea freight forwarding'.

Innovate UK (formerly Technology Strategy Board)

Project: Statement of Works � Applicability of Machine Learning Technology to GLA Services and Applications

Research and Development Directorate of the General Lighthouse Authorities of UK and Ireland

KTP with Hood Group: To embed the latest techniques in machine learning and natural language processing for automation of data collection, collation and provision in the form of a concierge style app for travel insurance customers.

Innovate UK (formerly Technology Strategy Board)

DOCME EDGE -project to carry out evaluation of running AI driven computations via App on personal devices instead of via cloud based systems

DOCME TECHNOLOGIES LTD

2022

Applicability of Machine Learning Technology to GLA Services and Applications (Phase 2)

Research and Development Directorate of the General Lighthouse Authorities of UK and Ireland

Automation of processes and in-house systems

PFE Express Limited

PFE Express Ltd KTP Application - 22_23 R3

PFE Express Limited

Applicability of Machine Learning Technology to GLA Services and Applications (Phase 2)

Research and Development Directorate of the General Lighthouse Authorities of UK and Ireland

2021

Horus Security KTP Application

Innovate UK (formerly Technology Strategy Board)

Shepherd Compello KTP

Innovate UK (formerly Technology Strategy Board)

Applicability of Machine Learning Technology to GLA Services and Applications

Research and Development Directorate of the General Lighthouse Authorities of UK and Ireland

2020

Can data mining analyse financial and behavioural information gathered through survey questions

Dom Education Limited

Contact

mkampo@essex.ac.uk

Location:

1NW.3.17, Colchester Campus

Academic support hours:

Please email me first to arrange a meeting.

More about me
personal: