ÌÇÐÄVlog

People

Dr Spyros Samothrakis

Chief Scientific Adviser and Senior Lecturer (R)
School of Computer Science and Electronic Engineering (CSEE)
Dr Spyros Samothrakis

Profile

Qualifications

  • 2014, PhD Computer Science,ÌÇÐÄVlog

  • 2007, MSc Intelligent Systems, University of Sussex

  • 2003, BSc Computer Science, University of Sheffield

Research and professional activities

Research interests

Reinforcement Learning

Open to supervise

Machine Learning

Open to supervise

Neural Networks

Open to supervise

Role Playing Games

Open to supervise

Teaching and supervision

Previous supervision

Damian Machlanski
Damian Machlanski
Thesis title: Understanding Hyperparameters in Machine Learning for Causal Estimation From Observational Data
Degree subject: Computer Science
Degree type: Doctor of Philosophy
Awarded date: 1/10/2024
Mahrad Pisheh Var
Mahrad Pisheh Var
Thesis title: Minimalistic Adaptive Dynamic-Programming Agents for Memory-Driven Exploration
Degree subject: Computer Science
Degree type: Doctor of Philosophy
Awarded date: 20/6/2024
Husam Malek Zaki Quteineh
Husam Malek Zaki Quteineh
Thesis title: Text Generation for Small Data Regimes
Degree subject: Computer Science
Degree type: Doctor of Philosophy
Awarded date: 16/9/2022
Mohammed Ali A Alshahrani
Mohammed Ali A Alshahrani
Thesis title: Exploring Embedding Vectors for Emotion Detection
Degree subject: Computer Science
Degree type: Doctor of Philosophy
Awarded date: 16/11/2020
Umar Isyaku Abdullahi
Umar Isyaku Abdullahi
Degree subject: Advanced Computer Science
Degree type: Master of Science
Awarded date: 5/10/2016

Publications

Publications (5)

Samothrakis, S., Soemers, DJNJ. and Machlanski, D., (2024). Games of Knightian Uncertainty as AGI testbeds

Soemers, DJNJ., Samothrakis, S., Driessens, K. and Winands, MHM., (2024). Environment Descriptions for Usability and Generalisation in Reinforcement Learning

Machlanski, D., Samothrakis, S. and Clarke, P., (2023). Hyperparameter Tuning and Model Evaluation in Causal Effect Estimation

Machlanski, D., Samothrakis, S. and Clarke, P., (2023). Robustness of Algorithms for Causal Structure Learning to Hyperparameter Choice

Machlanski, D., Samothrakis, S. and Clarke, P., (2022). Undersmoothing Causal Estimators with Generative Trees

Journal articles (32)

Fairbank, M., Prokhorov, D., Barragan-Alcantar, D., Samothrakis, S. and Li, S., (2025). . Neural Networks. 184, 107034-107034

Soemers, D., Samothrakis, S., Driessens, K. and Winands, M., (2025). Environment Descriptions for Usability and Generalisation in Reinforcement Learning. Proceedings of the 17th International Conference on Agents and Artificial Intelligence. 3, 983-992

Hughes, L., Dwivedi, YK., Malik, T., Shawosh, M., Albashrawi, MA., Jeon, I., Dutot, V., Appanderanda, M., Crick, T., De’, R., Fenwick, M., Gunaratnege, SM., Jurcys, P., Kar, AK., Kshetri, N., Li, K., Mutasa, S., Samothrakis, S., Wade, M. and Walton, P., (2025). AI Agents and Agentic Systems: A Multi-Expert Analysis. Journal of Computer Information Systems, 1-29

Samothrakis, S., (2024). . AI and Society. 39 (6), 2961-2972

Batsis, A. and Samothrakis, S., (2024). . Expert Systems with Applications. 249, 123541-123541

Long, GEM., Perez-Liebana, D. and Samothrakis, S., (2024). . IEEE Transactions on Games. 16 (4), 927-936

Machlanski, D., Samothrakis, S. and Clarke, P., (2024). . IEEE Access. 12, 38562-38574

Soemers, DJNJ., Samothrakis, S., Piette, É. and Stephenson, M., (2023). . Information Sciences. 624, 277-298

Pisheh Var, M., Fairbank, M. and Samothrakis, S., (2023). . Adaptive Behavior. 31 (6), 531-544

Lotun, S., Lamarche, V., Samothrakis, S., Sandstrom, G. and Matran-Fernandez, A., (2022). . Scientific Reports. 12 (1), 16565-

Hernandez, D., Denamganai, K., Devlin, S., Samothrakis, S. and Walker, JA., (2022). . IEEE Transactions on Games. 14 (2), 221-231

Fairbank, M., Samothrakis, S. and Citi, L., (2022). . Journal of Machine Learning Research. 23, 1-46

Dwivedi, YK., Hughes, L., Ismagilova, E., Aarts, G., Coombs, C., Crick, T., Duan, Y., Dwivedi, R., Edwards, J., Eirug, A., Galanos, V., Ilavarasan, PV., Janssen, M., Jones, P., Kar, AK., Kizgin, H., Kronemann, B., Lal, B., Lucini, B., Medaglia, R., Le Meunier-FitzHugh, K., Le Meunier-FitzHugh, LC., Misra, S., Mogaji, E., Sharma, SK., Singh, JB., Raghavan, V., Raman, R., Rana, NP., Samothrakis, S., Spencer, J., Tamilmani, K., Tubadji, A., Walton, P. and Williams, MD., (2021). Artificial Intelligence (AI): Multidisciplinary perspectives on emerging challenges, opportunities, and agenda for research, practice and policy. International Journal of Information Management. 57, 101994-101994

Samothrakis, S., (2021). . PLoS One. 16 (9), e0257399-e0257399

Samothrakis, S., (2020). Open Loop In Natura Economic Planning. CoRR. abs/2005.01539

Salge, C., Short, E., Preuss, M., Samothrakis, S. and Spronck, P., (2020). Applications of Artificial Intelligence in Live Action Role-Playing Games (LARP). 2020 IEEE Conference on Games (CoG). 2020-August, 612-619

Hernández, D., Denamganaï, K., Devlin, S., Samothrakis, S. and Walker, JA., (2020). A Comparison of Self-Play Algorithms Under a Generalized Framework.. CoRR. abs/2006.04471

Samothrakis, S., (2018). Viewpoint: Artificial Intelligence and Labour. Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence. 2018-July, 5652-5655

Samothrakis, S., (2018). Kathryn E. Merrick: Computational models of motivation for game-playing agents: Springer, 2016, 213 pp, ISBN: 978-3-319-33457-8. Genetic Programming and Evolvable Machines. 19 (4), 567-568

Samothrakis, S., (2018). Kathryn E. Merrick: Computational models of motivation for game-playing agents - Springer, 2016, 213 pp, ISBN: 978-3-319-33457-8.. Genet. Program. Evolvable Mach.. 19, 567-568

Samothrakis, S., Fasli, M., Perez, D. and Lucas, S., (2017). . Journal of Global Optimization. 67 (4), 893-907

Tom Vodopivec, Samothrakis, S. and Brank Ster, (2017). . The Journal of Artificial Intelligence Research. 60, 881-936

Samothrakis, S., Perez, D., Lucas, SM. and Rohlfshagen, P., (2016). . IEEE Transactions on Computational Intelligence and AI in Games. 8 (1), 1-12

Perez-Liebana, D., Samothrakis, S., Togelius, J., Schaul, T., Lucas, SM., Couetoux, A., Lee, J., Lim, C-U. and Thompson, T., (2016). . IEEE Transactions on Computational Intelligence and AI in Games. 8 (3), 229-243

Perez, D., Mostaghim, S., Samothrakis, S. and Lucas, SM., (2015). . IEEE Transactions on Computational Intelligence and AI in Games. 7 (4), 347-360

Samothrakis, S. and Fasli, M., (2015). . PLoS One. 10 (11), e0141922-e0141922

Perez, D., Powley, EJ., Whitehouse, D., Rohlfshagen, P., Samothrakis, S., Cowling, PI. and Lucas, SM., (2014). . IEEE Transactions on Computational Intelligence and AI in Games. 6 (1), 31-45

Perez, D., Togelius, J., Samothrakis, S., Rohlfshagen, P. and Lucas, SM., (2014). . IEEE Transactions on Evolutionary Computation. 18 (5), 708-720

Samothrakis, S., Lucas, S., Runarsson, T. and Robles, D., (2013). . IEEE Transactions on Evolutionary Computation. 17 (2), 213-226

Friston, K., Samothrakis, S. and Montague, R., (2012). Active inference and agency: optimal control without cost functions. Biological Cybernetics. 106 (8-9), 523-541

Browne, CB., Powley, E., Whitehouse, D., Lucas, SM., Cowling, PI., Rohlfshagen, P., Tavener, S., Perez, D., Samothrakis, S. and Colton, S., (2012). . IEEE Transactions on Computational Intelligence and AI in Games. 4 (1), 1-43

Samothrakis, S., Robles, D. and Lucas, S., (2011). . IEEE Transactions on Computational Intelligence and AI in Games. 3 (2), 142-154

Book chapters (1)

Samothrakis, S., Perez, D. and Lucas, S., (2019). Training Gradient Boosting Machines Using Curve-Fitting and Information-Theoretic Features for Causal Direction Detection. In: The Springer Series on Challenges in Machine Learning. Editors: . Springer International Publishing. 331- 338. 9783030218096

Conferences (36)

Machlanski, D., Samothrakis, S. and Clarke, P., (2024).

Samothrakis, S., Soemers, DJNJ. and Machlanski, D., (2024). Games of Knightian Uncertainty as AGI testbeds

Pisheh Var, M., Fairbank, M. and Samothrakis, S., (2023).

Long, GEM., Perez-Liebana, D. and Samothrakis, S., (2023). Balancing Wargames through Predicting Unit Point Costs

Quteineh, H., Samothrakis, S. and Sutcliffe, R., (2022).

Samothrakis, S., Matran-Fernandez, A., Abdullahi, U., Fairbank, M. and Fasli, M., (2022).

Raza, H., Chowdhury, A., Bhattacharyya, S. and Samothrakis, S., (2020).

Quteineh, H., Samothrakis, S. and Sutcliffe, R., (2020).

Salge, C., Short, E., Preuss, M., Samothrakis, S. and Spronck, P., (2020). Applications of Artificial Intelligence in Live Action Role-Playing Games (LARP).

Abdullahi, UI., Samothrakis, S. and Fasli, M., (2020). Causal Inference with Correlation Alignment

Raza, H. and Samothrakis, S., (2019). Bagging Adversarial Neural Networks for Domain Adaptation in Non-Stationary EEG

Rajalingam, VR. and Samothrakis, S., (2019). Neuroevolution Strategies for Word Embedding Adaptation in Text Adventure Games

Hernandez, D., Denamganai, K., Gao, Y., York, P., Devlin, S., Samothrakis, S. and Walker, JA., (2019). A Generalized Framework for Self-Play Training

Sankarpandi, SK., Samothrakis, S., Citi, L. and Brady, P., (2019). Active learning without unlabeled samples: generating questions and labels using Monte Carlo Tree Search

Alshahrani, M., Samothrakis, S. and Fasli, M., (2019). Identifying idealised vectors for emotion detection using CMA-ES

Samothrakis, S., (2018). Viewpoint: Artificial Intelligence and Labour.

Samothrakis, S., Vodopivec, T., Fairbank, M. and Fasli, M., (2017).

Alshahrani, M., Samothrakis, S. and Fasli, M., (2017). Word mover's distance for affect detection

Abdullahi, U., Samothrakis, S. and Fasli, M., (2017). Counterfactual domain adversarial training of neural networks

Abdullahi, UI., Samothrakis, S. and Fasli, M., (2017). Counterfactual Domain Adversarial Training of Neural Networks

Alshahrani, M., Samothrakis, S. and Fasli, M., (2017). Word Mover's Distance for Affect Detection

Perez-Liebana, D., Samothrakis, S., Togelius, J., Lucas, SM. and Schaul, T., (2016).

Samothrakis, S., Vodopivec, T., Fasli, M. and Fairbank, M., (2016).

Perez-Liebana, D., Samothrakis, S., Togelius, J., Schaul, T. and Lucas, SM., (2016).

Samothrakis, S., Perez-Liebana, D., Lucas, SM. and Fasli, M., (2015).

Lucas, SM., Samothrakis, S. and Pérez, D., (2014).

Perez, D., Powley, E., Whitehouse, D., Samothrakis, S., Lucas, S. and Cowling, PI., (2014).

Perez, D., Samothrakis, S. and Lucas, S., (2014).

Samothrakis, S., Roberts, SA., Perez, D. and Lucas, SM., (2014).

Perez, D., Samothrakis, S., Lucas, S. and Rohlfshagen, P., (2013). Rolling horizon evolution versus tree search for navigation in single-player real-time games

Perez, D., Samothrakis, S. and Lucas, S., (2013).

Ashlock, D., Ashlock, W., Samothrakis, S., Lucas, S. and Lee, C., (2012).

Samothrakis, S. and Lucas, S., (2011).

Samothrakis, S., Rob, D. and Lucas, SM., (2010).

Samothrakis, S. and Lucas, SM., (2010).

(1991). Proceedings of the 29th annual meeting on Association for Computational Linguistics -

Reports and Papers (1)

Fairbank, M., Samothrakis, S. and Citi, L., (2021).

Grants and funding

2025

Spyros Samothrakis Turing and UoE Consultancy Project

Alan Turing Institute

Element-compositor methods for out-of-distribution machine learning

Engineering and Physical Sciences Research Council

2024

ESRC Research Centre on Micro-Social Change

Economic and Social Research Council

2023

To design and deliver a database architecture for ingestion of a broad range of historical and future data, and to provide first-in-sector analysis on identification of relationships between key datapoints and datastreams to derive novel ecological conclusions for commercially advantageous purposes.

Innovate UK (formerly Technology Strategy Board)

2022

National Theatre Archive data analysis innovation voucher

The Royal National Theatre

2021

G's Growers KTP Application

Innovate UK (formerly Technology Strategy Board)

Cancer Pathways

Mid and South ÌÇÐÄVlog NHS Foundation Trust

2020

PREQIN KTP2 Application - March 2020 resubmission

Preqin KTP 2

PREQIN KTP2 Application - March 2020 resubmission

Preqin KTP 2

2019

The Research Centre on Micro-Social Change (MiSoC)

Economic and Social Research Council

The development of a new CPD tracker using AI and embedded machine learning to track and enhance performance of all staff.

Innovate UK (formerly Technology Strategy Board)

Orbital Media IV (EIRA)

Orbital Media & Advertising Ltd

The Research Centre on Micro-Social Change (MiSoC)

Economic and Social Research Council

The Research Centre on Micro-Social Change (MiSoC)

Economic and Social Research Council

2018

Discovering Individual and Social Preferences through Inverse Reinforcement Learning

Economic and Social Research Council

Develop AI methods to optimise interactions with customers.

Innovate UK (formerly Technology Strategy Board)

2017

The project investigates the use of algorithms (genetic + reinforcement) to provide accurate forecasts of asset prices.

Innovate UK (formerly Technology Strategy Board)

Embedding a Machine Learning capability into the Hood Group Ltd platform.

Innovate UK (formerly Technology Strategy Board)

IAA ECC Challenge Lab project - Community inclusion

Catalyst Project (HEFCE Funding)

Create new methods of capturing insight from current and future Preqin datasets by embedding AI and Machine Learning techniques across the unique Preqin investor platform.

Prequin

Create new methods of capturing insight from current and future Preqin datasets by embedding AI and Machine Learning techniques across the unique Preqin investor platform.

Prequin

The project investigates the use of algorithms (genetic + reinforcement) to provide accurate forecasts of asset prices.

Innovate UK (formerly Technology Strategy Board)

To embed a NLP capability in Objective IT

Innovate UK (formerly Technology Strategy Board)

To embed a NLP capability in Objective IT

Innovate UK (formerly Technology Strategy Board)

2016

67% Embedding an innovative application of advanced data mining, data analytics and data visualisation to exploit the growth potential of the UK's leading insight platform for professional services firms

Technology STrategy Board

33% Embedding an innovative application of advanced data mining, data analytics and data visualisation to exploit the growth potential of the UK's leading insight platform for professional services firms

Mondaq Ltd

67% - The design and development of a scalable, avatar based, digital healthcare platform, driven by AI and Machine Learning technology.

Technology STrategy Board

33% - The design and development of a scalable, avatar based, digital healthcare platform, driven by AI and Machine Learning technology.

Orbital Media & Advertising Ltd.

Scoping Exercise for new data product

Hood Group Ltd

2015

67% - To extend the business intelligence and digital marketing offer by developing and embedding a new data analytics capability

Technology STrategy Board

33% - To extend the business intelligence and digitial marketing offer by developing and embedding a new data analytics capability

Objective Computing Ltd

Contact

ssamot@essex.ac.uk

Location:

PARKSIDE BLOCK C2, Colchester Campus

More about me